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ABSTRACT

In this paper we focus on robust, real-time human head pose esti-
mation in low resolution RGB data without any smoothing motion
priors e.g. direction of motion. Our main contributions lie in three
major areas. First, we show that a generative Deep Belief Network
model can be learned on human head data from multiple types of
data sources. These sources have similar underlying data that are not
necessarily labelled or have the same kind of ground truth. Second,
we perform discriminative training using multiple disparate supervi-
sory labels to fine tune the model for head pose estimation. Third,
we present state-of-the-art results on two publicly available datasets
using this new approach. Our implemetation computes head pose
for a head image in 0.8 milliseconds, making it real-time and highly
scalable.

Index Terms— Head Pose, Gaze, Surveillance , Deep Belief
Network, Deep Learning, Unsupervised Learning

1. INTRODUCTION

Automatic gazing direction estimation has become an important fea-
ture for applications of computer vision to surveillance and human
behaviour inference [2]. Human head pose is the most important
factor in determining focus of attention [3] and provides important
information for group detection, gesture, interaction detection, and
scene understanding [4].

There remains a significant gap in the current methods for un-
constrained head-pose estimation in low resolution. This work ad-
dresses the need for computing low-resolution gaze estimators with-
out reliance on motion priors to smooth the estimate and presents a
demonstrably more robust method using deep learning. In summary,
the main scientific contributions of this paper are:
(a) Learning a generative human head model in an abstract head
space that can reconstruct heads from low resolution, noisy inputs;
(b) Discriminating between head pose angles from the input im-
age without other prior information using multi label discrimina-
tive training using various loss functions; (c) We report state-of-the
art results on two publicly available datasets when compared to the
state-of-the-art approaches. Figure 1 illustrates the output of our sys-
tem on a typical surveillance dataset.

1.1. Related work

In visual surveillance the resolution of detected heads can be very
small so head-pose is often estimated in coarse discrete directional
bins of the azimuthal angle [5]. See for example the eight classifica-
tion bins used in this paper in Figure 1. Walking direction is often
used as priors [6, 7, 8]. which reduces mean squared error, but also
attenuates the pure information content of the head pose signal. As

Fig. 1. Example output of our system showing Head pose estimation
in the Oxford town center dataset[1]. Individual heads have been
zoomed in. The row on the bottom shows the Head pose classes
used for classification.

shown in Fig 2, an analysis of gazing behaviour in several datasets
demonstrates that most people look where they are going. However,
the cases that are of more interest are when people deviate from this
behaviour (i.e. look somewhere else), as this information could be
useful for anomaly detection or improving tracking [9].

To obtain an unbiased classifier we estimate head pose from the
image alone by learning to represent human heads in an unsuper-
vised fashion. Blanz et al. [10] use a generative morphable 3D
model of human faces in an abstract face-space that can generate hu-
man faces with different shapes, colours and expressions. We learn
a representation that is valid for human heads under different poses
and is invariant to expressions, occlusions, hair, hats, and glasses.
The power of a generative model, as shown by Tang et al. in [11],
lies in being able to reconstruct original images under noise or heavy
occlusions and so we use Deep Belief Networks [12]. These have
been successfully applied to image and voice recognition [13]. Con-
volutional Neural Networks [14] have mostly replaced the DBNs in
terms of accuracy in large labelled datasets like the imagenet, they
are completely supervised so cannot learn from unlabelled data as



Fig. 2. Head pose deviation from walking direction as a Probability
Density Function in various datasets [9]

we do here.
The pioneering work on low resolution head pose estimation by

Robertson and Reid [5] used a detector based on template training
to classify head poses in 8 directional bins. This technique was ex-
tended to allow colour invariance by Benfold et al. [7], who pro-
posed a randomized fern classifier for hair face segmentation before
template matching. A few non-linear regression approaches such
as Artificial Neural Networks [15, 16] and High-dimensional man-
ifold based approaches [17, 18] try to estimate the head poses in
a continuous range. These techniques however are more suited to
high resolution human computer interaction cases where the head is
more or less constrained to near frontal poses. Chen and Odobez [8]
proposed the state-of-the-art method for unconstrained coupled head
pose and body pose estimation in low resolution surveillance videos.
They used multi-level HOG for the head and body pose features and
extracted a feature vector for adaptive classification using high di-
mensional kernel space methods. Coupling of head pose with such
priors results in a head pose signal that is less informative: these
techniques perform very well in the range indicated in Figure 2, but
perform poorly when the head pose is not aligned to the priors. We
stress this point because it is important for the head pose estima-
tion to provide robust information that can be further exploited (e.g.
improving tracking, anomaly detection, group detection, behaviour
analysis) and achieving this goal is what this paper demonstrates.

We discuss the theory behind generative and discriminative
modelling and how we exploit both in order to solve the problem.
We then discuss the results on two publicly available datasets and
show the benefits of our approach compared to prior work.

2. THEORY AND METHODOLOGY

In this paper we do not concern ourselves with the problem of de-
tecting heads. Instead we can adapt the output of any head detector
and normalize the heads to a resolution of 32 × 32 as input to our
algorithm. Figure 4 shows the overall architecture of the DBN used.

2.1. Parametric Human Head Space

The underlying motivation of this work comes from the theory that
human heads lie in a parametric space. This was first shown to be
working by Blanz et al. [10] where they derived the basis of this
space by a linear combination of shape and texture information of

Fig. 3. Conceptual diagram showing different parameters control-
ling the appearance of the head

high resolution 3d head scans of 200 adult faces. Hence by using
400 shape and texture parameters they derived a morphable model
that could be used to synthesize new faces or estimate a model from
2D images of a given face. However, the human head space is much
more complicated because aside from low resolution, surveillance
data contains other complicating factors such as varying hair styles,
facial hair, and occlusions (e.g. hats, glasses). This requires a much
larger parameter space. However, for headpose, which is a very big
factor in appearance (and hence has a big eigenvalue in the pca sub-
space), fewer parameters are needed. Figure 3 shows how a para-
metric head-space can generate various human heads with different
identity, expression and pose. The head pose datasets are limited in
the number of examples per person and image quality. Hence, we
consolidated many different datasets not necessarily ground truthed
for head pose into an unsupervised framework in a generative model.
Deep Belief Networks [12] are very well suited for this purpose.

2.2. Deep Belief Networks (DBN)

A DBN is constructed from unsupervised, greedily trained stacks of
restricted boltzmann machines (RBMs). RBMs are a form of energy
based generative model in which the energy functions can be written
as follows:

E (v, h) = −b′v − c′h− h′Wv (1)

Where b,c and W are the parameters θ and v and h are the visible
and hidden units of the model. The model is trained with contrastive
divergence that estimates the gradients of the energy function with
respect to the model parameters given the training data X.

∂E (X, θ)

∂θ
=
∂ logZ (θ)

∂θ
−
〈
∂ log f (x, θ)

∂θ

〉
(2)

where Z (θ) is the partition function defined as

Z (θ) =

ˆ
f (x, θ) dx (3)

Where f (x, θ) is the underlying distribution we are trying to
model. It is not easy to find the derivative of the partition function
because we do not know the underlying representation. It can be



Fig. 5. What the network sees. This figure shows a reconstruction of the input image in top row with their reconstruction from network
parameters in the last layer in the bottom row. Sub-figure (a) on the left suggests that for head pose the eye and mouth region is very important
whereas facial hair, hairstyle and facial expressions are attenuated. The network has learned to handle occlusions and shift. Sub-figure (b)
on the right shows some interesting errors made by the network. Under extreme low resolution or noisy input on the left the network sees a
face where none exist. On the right the middle the face is eliminated. However even in these extreme low resolution cases the network can
estimate parameters.

Fig. 4. Here we show the hierarchical DBN architecture which cre-
ates a 400 dimensional head representation that is then discrimina-
tivly trained on various datasets based with varying ground truths
ranging from basic front/back classification to full real valued angle
regression with interchangeable softmax and L2 loss functions

suitably derived by using Markov Chain Monte Carlo sampling from
the training data and given sufficient examples it should converge
to the real derivative, however, this is not computationally tractable.
The parameter update equation derived from just one step of Markov
Chain Monte Carlo sampling from the training data has empirically
proven to be effective by Hinton et al [12]. It can be written as:

θt+1 = θt+1 + η

(〈
∂ log f (x, θ)

∂θ

〉
X0

−
〈
∂ log f (x, θ)

∂θ

〉
X1

)
(4)

Where η is the training rate. The layers of RBMs are trained in an

Fig. 6. This graph compares our algorithm in terms of MSE with the
Benfold [6] and Cheng algorithm [8]

unsupervised fashion layer by layer to form a Deep Belief Network.
Conceptually, by changing the number of neurons in each subse-
quent hidden layer the representation of the underlying data can be
learned in a hierarchical fashion. Figure 4 shows the architecture
used for our system. We use only two layer because more layers
degraded performance with the amount of data present for training.

3. EXPERIMENTS AND VALIDATION

We use multiple datasets to train our system and we validate our
approach on two publicly available datasets as discussed below.

3.1. Datasets

To maximise the training corpus, we gathered data from multiple
sources that had similar underlying distributions. Datasets anno-
tated for unconstrained face recognition, facial landmark detection,



Fig. 7. Confusion matrices showing the output of (a) The Benfold algorithm [7] on the Oxford town center dataset, (b) Our DBN approach
on the Oxford town center dataset, (c) Our DBN output on the Caviar dataset.

expression detection all have facial data under various poses. The
different head pose datasets that we used are the Oxford town cen-
ter dataset, the RGB data from Biwi Kinect headpose dataset [19],
the Caviar shopping center dataset, the IIT Head Orientation dataset
along with the IDIAP headpose dataset [20]. Furthermore our own
dataset captured 46 people (32 males, 14 females) freely moving in-
front of a camera with a miniature wireless IMU sensor for head pose
ground truth. Each person covered all possible head pose angles in
a continuous manifold at a distance varying from 2m-8m from the
camera. We gathered approximately 1500 frames per person giving
a total of 68126 examples. It should be highlighted that the differ-
ent datasets have different annotations; some of them have real val-
ued ground truths, others have 6-8 classes spanning the 360◦. The
datasets vary in resolution from very high in the BIWI datset to very
low in the Oxford town centre dataset. Furthermore, for regular-
isation of the network in the unsupervised phase we included the
Multi-task Facial Landmark Dataset (MTFL) [21] and the Labelled
Faces in the Wild [22] datasets as they have a wide range of poses,
but these are not labelled for head pose.

3.2. Training

The network used two RBMs stacked to form a DBN as shown in
Figure 4. The final output layer was interchanged for various head-
pose datasets depending on their ground truth. We normalized all
the head images to 32× 32 for input to the network. We also scaled
the head bounding box to 0.8, 1, 1.5, 1.8, 2.0, and 2.5 scaled crops
to achieve some scale invariance. To achieve translation invariance
we also used scale 1 crops with strides of (3,3) pixels from the 1.5-
2.5 scaled crops. The network was trained with 30% dropout and a
decaying learning rate. For validation on the Caviar and the Oxford
datasets we use a training-testing split of 70%-30%. Figure 5 shows
the reconstructions of the image from the parameters estimated by
the networks top most layer by back projection into the image space.
This gives us a unique perspective into what the network actually
found important for the problem feature selection.

4. RESULTS

We report our results on the Oxford and the Caviar datasets. In these
datasets we classify the head pose into 8 equally spaced (45◦) an-
gular bins as shown in Figure 1. For comparison with [8] and Ben-
fold [6] we use the Oxford dataset in which both have reported re-
sults. One consideration has to be made while comparing because
[8] reported the mean square error (MSE) which they derived from
a weighted combination of their 8 class classifier output multiplied
with the bin angles as

∑8
i=1 pi

−→ηθi where pi is the classifier output

value for the class i and −→ηθi is the unit vector in that angular direc-
tion. Since our softmax layer gives probability, it is unclear how to
interpret vector addition weighted by probability. But for the sake
of comparison we derive our mean squared error (MSE) in the same
way. Figure 6 shows the comparison between our method with the
previous state of the art results. In terms of MSE we outperform the
best results by 1.8◦. The margin while comprehensive may not be
representative of the true picture. We therefore present the confusion
matrices on the Oxford and Caviar datasets. In terms of classification
accuracy on the Caviar dataset we achieve 76.38% accuracy on the
Caviar dataset. To our knowledge it is the best result on this dataset.

On the Oxford dataset, for comparison, we also show the output
confusion matrix of the Benfold algorithm [7] along with our con-
fusion matrix. Apart from the fact that we outperform the Benfold
algorithm by a large margin, it is interesting to note that the Benfold
algorithm shows some interesting biases connected to walking di-
rection. The confusion matrix shows a large classifier bias in the C2
and C6 pose classes, which, as can be seen from Figure 1, coincides
with the direction of the road. As most people are going up or down
the road and generally looking where they are going (as can be seen
from Figure 2) the algorithm seems to have learned this bias in the
scene.

We out perform both the previous state of the art methods with-
out using any kind of prior coupling as the confusion matrices in
Figure 7 show very clearly. For completeness we show the MSE
in Figure 6, as this metric is used in the papers against which we
compare. The difference in MSE is not as dramatic as the confusion
matrices shown suggests but nevertheless demonstrates a significant
improvement. One feedforward pass through our DBN on a GPU
for headpose estimation on a single 32 × 32 image takes 0.8 mil-
liseconds. This makes our system real-time and it can be scale up
massively but still maintain real-time performance.

5. CONCLUSION

In this paper we presented a data-driven semi-supervised approach to
low resolution head pose estimation in the wild. We achieved state-
of-the-art results on two publicly available datasets. The model fine
tuned on head pose was able to select features that are invariant to
occlusion and expression. In future we will consider making our
model deeper and use convolution and pooling filters in the first few
stages to improve spatial invariance and reduce the overall number
of parameters in the net.
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